In the previous chapter, we explored Airflow’s UI and showed you how to define a basic Airflow DAG and run it every day by defining a scheduled interval. In this chapter, we will dive a bit deeper into the concept of scheduling in Airflow and explore how this allows you to process data incrementally at regular intervals. First, we’ll introduce a small use case focused on analyzing user events from our website and explore how we can build a DAG to analyze these events at regular intervals. Next, we’ll explore ways to make this process more efficient by taking an incremental approach to analyzing our data and understanding how this ties into Airflow’s concept of execution dates. Finally, we’ll finish by showing how we can fill in past gaps in our data set using backfilling and discussing some important properties of proper Airflow tasks.