selected bibliography
published
[1]
P. S. L. M. Barreto, B. Lynn, and M. Scott,
“‘Constructing elliptic curves with prescribed embedding degrees’,” in
Security in communication networks, S. Cimato, G. Persiano, and C. Galdi, Eds., Springer Berlin Heidelberg, 2003, pp. 257–267.
[2]
N. Bitansky
et al.,
“‘The hunting of the SNARK’,”
Cryptology ePrint Archive, 2014, Available:
https://eprint.iacr.org/2014/580
[3]
I. Blake, G. Seroussi, and N. Smart,
Elliptic curves in cryptography. Cambridge University Press, 1999.
[4]
D. Boneh, M. Drijvers, and G. Neven,
“‘Compact multi-signatures for smaller blockchains’,” in
Advances in cryptology—ASIACRYPT 2018, T. Peyrin and S. Galbraith, Eds., Springer International, 2018, pp. 435–464.
[5]
S. Brands,
Rethinking public key infrastructures and digital certificates: Building in privacy. MIT Press, 2000.
[6]
L. Carroll,
The hunting of the snark. Melville House, 2010.
[7]
H. Cohen,
A course in computational algebraic number theory. Springer-Verlag, 2000.
[8]
C. Diem,
“‘On the discrete logarithm problem in elliptic curves’,”
Compositio Mathematica, vol. 147, pp. 75–104, 2011.
[9]
J. Doliskani and É. Schost,
“Taking roots over high extensions of finite fields,”
Mathematics of Computation, vol. 83, pp. 435–446, 2011.
[10]
A. Faz-Hernandez, S. Scott, N. Sullivan, R. S. Wahby, and C. A. Wood,
“Hashing to elliptic curves.” Internet Engineering Task Force, 2021.
[11]
D. Freeman, M. Scott, and E. Teske,
“A taxonomy of pairing-friendly elliptic curves,”
Cryptology ePrint Archive, vol. paper 2006/372, 2006.
[12]
J. Groth,
“On the size of pairing-based non-interactive arguments,” in
Advances in cryptology—EUROCRYPT 2016, M. Fischlin and J.-S. Coron, Eds., Springer, 2016, pp. 305–326.
[13]
N. Koblitz,
A course in number theory and cryptography, 2nd ed. Springer, 1994.
[14]
N. Koblitz and A. Menezes,
“Pairing-based cryptography at high security levels,” in
Cryptography and coding, N. P. Smart, Ed., Springer, 2005, pp. 13–36.
[15]
N. Koblitz and A. J. Menezes,
“A riddle wrapped in an enigma,” vol. Paper 2015/1018. Cryptology ePrint Archive, 2015.
[16]
P. C. Kocher,
“Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems,” in
Advances in cryptology — CRYPTO ’96, N. Koblitz, Ed., Springer Berlin Heidelberg, 1996, pp. 104–113.
[17]
R. Lidl and H. Niederreiter,
“Finite fields,” in
Encyclopedia of mathematics and its applications, 2nd ed., Cambridge University Press, 1997.
[18]
A. Menezes,
“An introduction to pairing-based cryptography,” in
Contemporary mathematics, vol. 477, 2005, pp. 47–65.
[19]
A. Menezes, M. Qu, and S. A. Vanstone,
“Some key agreement protocols providing implicit authentication,” in
2nd workshop on selected areas in cryptography (SAC ’95), 1995, pp. 22–32.
[20]
National Institute of Standards and Technology,
Federal inf. Process. stds. 2001.
[21]
National Institute of Standards and Technology,
NIST special publication 800-185, SHA-3 derived functions. 2016.
[22]
National Institute of Standards and Technology,
NIST special publication 800-56A revision 3. 2018.
[23]
National Institute of Standards and Technology,
Federal inf. Process. stds. 2023.
[24]
H. Riesel,
Prime numbers and computer methods for factorization. Birkhäuser, 2013.
[25]
M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter,
“Quantum resource estimates for computing elliptic curve discrete logarithms,” in
Advances in cryptology—ASIACRYPT 2017, T. Takagi and T. Peyrin, Eds., Springer International, 2017, pp. 241–270.
[26]
M. Rosing,
Implementing elliptic curve cryptography. Manning Publication, 1999.
[27]
J. H. Silverman,
Advanced topics in the arithmetic of elliptic curves. Springer-Verlag, 1994.
[28]
J. H. Silverman,
The arithmetic of elliptic curves, 2nd ed. Springer-Verlag, 2009.
[29]
J. von zur Gathen and J. Gerhard,
Modern computer algebra, 1st ed. Cambridge University Press, 1999.
[30]
D. Wong,
Real-world cryptography. Manning Publications, 2021.
|
Get Elliptic Curve Cryptography for Developers