Chapter 3. Deep learning and neural networks
6.1. An intuitive approach to deep learning
6.3.2. Training a perceptron in scikit-learn
6.3.3. A geometric interpretation of the perceptron for two inputs
6.4. Multilayer perceptrons
6.4.1. Training using backpropagation
6.4.2. Activation functions
6.4.3. Intuition behind backpropagation
6.4.4. Backpropagation theory
6.4.5. MLNN in scikit-learn
6.5. Going deeper: from multilayer neural networks to deep learning
6.5.1. Restricted Boltzmann Machines
6.5.2. The Bernoulli Restricted Boltzmann Machine
What’s inside