This chapter covers
- Creating a compelling data science project
- Starting a blog
- Full walkthroughs of example projects
You’ve now finished a bootcamp, a degree program, a set of online courses, or a series of data projects in your current job. Congratulations—you’re ready to get a data scientist job! Right?
Well, maybe. Part 2 of this book is all about how to find, apply for, and get a data science position, and you can certainly start this process now. But another step can really help you be successful: building a portfolio. A portfolio is a set of data science projects that you can show to people so they can see what kind of data science work you can do.
A strong portfolio has two main parts: GitHub repositories (repos for short) and a blog. A GitHub repo hosts the code for a project, and the blog shows off your communication skills and the non-code part of your data science work. Most people don’t want to read through thousands of lines of code (your repo); they want a quick explanation of what you did and why it’s important (your blog). And who knows—you might even get data scientists from around the world reading your blog, depending on the topic. As we discuss in the second part of this chapter, you don’t have to just blog about analyses you did or models you built; you could also explain a statistical technique, write a tutorial for a text analysis method, or even share career advice (such as how you picked your degree program).