Preface

 

As a student of physics and astronomy, I spent a significant proportion of my time dealing with data from measurements and simulations, with the goal of deriving scientific value by analyzing, visualizing, and modeling the data. With a background as a programmer, I quickly learned to use my programming skills as an important aspect of working with data. When I was first introduced to the world of machine learning, it showed not only great potential as a new tool in the data toolbox, but also a beautiful combination of the two fields that interested me the most: data science and programming.

Machine learning became an important part of my research in the physical sciences and led me to the UC Berkeley astronomy department, where statisticians, physicists, and computer scientists were working together to understand the universe, with machine learning as an increasingly important tool.

At the Center for Time Domain Informatics, I met Joseph Richards, a statistician and coauthor of this book. We learned not only that we could use our data science and machine-learning techniques to do scientific research, but also that there was increasing interest from companies and industries from outside academia. We co-founded Wise.io with Damian Eads, Dan Starr, and Joshua Bloom to make machine learning accessible to businesses.

sitemap